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ABSTRACT Autonomous vehicles are an essential tool for promoting the development of intelligent
transportation systems (ITS) and can effectively reduce traffic accidents caused by human errors. As an
important part of the automatic driving software system, path planning is responsible for generating the
motion trajectory of the vehicle, which is the primary factor determining driving quality. However, solution
space construction and optimization problem formulation remain challenging research areas in the field
of path planning. In this paper, we propose a multi-objective optimization algorithm for static obstacle
avoidance to improve the comfort, safety and anti-deviation of the planned trajectory. We decouple the
lateral and longitudinal motion of the vehicle using the Frenet frame and discretize the driving state space
to generate target states of the vehicle. Based on the initial and target states, we generate a set of lateral and
longitudinal motion trajectories using quintic and quartic polynomials, respectively. In addition, we design
a cost function that comprehensively considers the comfort, safety, and deviation distance of the road center
line by combining an acceleration check, curvature check, and collision check. As part of the cost function,
we propose a novel method to quantify the safety of candidate trajectories considering the size of obstacles.
The experimental results show that the proposed algorithm can quantize the safety of candidate paths and
improve comfort 13.47%, 32.19%, 59.36% and 18.60% on a straight road, curvy road, intersection and
U-shaped road, respectively. Furthermore, the algorithm can improve anti-deviation by 63.72%, 13.86%,
44.36%, and 45.56% on a straight road, curvy road, intersection and U-shaped road, respectively.

INDEX TERMS Autonomous driving, intelligent transportation systems (ITS), trajectory planning, Frenet
frame, convex optimization, cost function.

I. INTRODUCTION
Autonomous driving is an important development direction in
the field of intelligent transportation technology. It can reduce
traffic accidents caused by improper operations such as drunk
driving, drowsy driving and speeding, while also relieving
traffic congestion and improving the overall performance of
a transportation system. The framework of an autonomous
driving system is a hierarchical structure [1], as demonstrated
in Figure 1. This hierarchical framework typically encom-
passes four key modules: perception, decision, path planning,
and vehicle control [2]. The perception module serves as the
front end of the autonomous driving system, utilizing sensors
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to gather data about the surrounding environment. This data
is utilized to perform essential tasks such as localization,
object detection, path prediction and object tracking. These
tasks enable the system to identify and comprehend diverse
elements and obstacles, including roads, vehicles, traffic
signs, precise vehicle locations and predicted trajectories. The
decision module receives information from the perception
module, and then analyzes and reasons based on this infor-
mation to make appropriate driving decisions. It considers
factors such as traffic rules and passenger requirements and
generates a behavioural strategy to respond to the current
driving scenario. The planning module takes the behavioural
strategy provided by the decision module and combines it
with high-definition maps and real-time perception data to
generate a planned path. This path guides the vehicle’s driving
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FIGURE 1. An illustration of function modules of the autonomous driving system.

direction, lane changes, turns, and ensures the vehicle reaches
its destination safely and efficiently. The control module is
responsible for precisely and smoothly tracking the planned
path through actual vehicle operations, including accelera-
tion, braking, steering, etc [3].

The path planning module plays a pivotal role in the
hierarchical framework, serving as a vital bridge between
the perception module, decision-making module and vehi-
cle control module. Its essence lies in solving optimization
problems with constraints in a complex convex space. Addi-
tionally, it is also involved in multi-agent clustering, obstacle
avoidance and target tracking control, and is a key basic
common problem. Therefore, the path planning algorithm
is the core of autonomous driving technology. The perfor-
mance of the algorithm directly determines the success or
failure of autonomous driving [4], [5]. Path planning tech-
nology is broadly classified into two categories: the first
category is global path planning, which aims to find the
optimal or suboptimal path from the starting point to the
destination point. The second category is local path plan-
ning, which involves obtaining environmental information
through sensors in unknown or partially unknown environ-
ments, allowing autonomous driving vehicles to obtain a
collision-free executable optimal planned path. It focuses on
considering the current local environmental information on
vehicles. A path with a timestamp is called a trajectory and
includes both spatial information (location, curvature and
heading) and temporal information (speed and acceleration).

Despite the numerous local planning algorithms [6], [7], [8]
have been proposed since the DARPA Grand Challenge
(2004, 2005) and theUrban Challenge (2007), they all present
a common limitation: the utilization of the Cartesian frame
cannot sufficiently describe the relationship between the
position of the vehicle and the road. Therefore, in 2010,
Werling et al. [9] proposed the use of the Frenet frame as
an alternative solution. This coordinate system employs the
road center line as the horizontal axis and represents the
vehicle’s offset from the road center line as the vertical axis.
By adopting the Frenet frame, the relationship between the
vehicle and the road can be intuitively described. Based on
the Frenet frame, a complex three-dimensional motion can

be decoupled into two independent two-dimensional motions,
which effectively reduces the complexity of the path planning
problem [10]. Consequently, this paper focuses on study-
ing the local path planning problem under the hierarchical
framework.

A. RELATED WORK
The essence of path planning is the search for an optimum
in a non-convex space. However, it is well established that
there is no optimal solution to the non-convex problem. Thus,
researchers have been focusing on transforming non-convex
problems into convex ones, formulating path planning prob-
lems to find optimal solutions. Currently, there are two
main independent research orientations for this including the
learning-based orientation and algorithm-based orientation.
Table 1 shows a summary of the main methods of these two
orientations.

The learning-based methodology simplifies the hierarchi-
cal structure. It straightforwardly inputs raw sensor data,
such as camera-captured frames and radar point cloud data,
into a multi-layer neural network for training. This process
enables the network to output path points or even directly
generate control commands [11], [12]. Typical approaches
within this methodology include imitation learning meth-
ods utilizing various network structures, as well as deep
reinforcement learning methods employing diverse reward
strategies [13], [14], [15], [16]. The learning-based method
streamlines the path planning process by directly mapping
sensor inputs to control outputs without the need for explicit
algorithms or intermediate steps. Although it can perform
well in specific training scenarios, it may struggle to gen-
eralize to new or unseen situations, potentially resulting in
poor performance or safety issues. Moreover, this approach
demands substantial computational resources to find a feasi-
ble plan due to extensive trial and error in the training [17].

The algorithm-based methodology depends on the hier-
archical structure and takes into account the behavioural
strategy provided by the decision module, high-definition
maps and real-time perception data from the perception
module to generate a planned path. In contrast to the learning-
based method, a notable strength of the algorithm-based
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TABLE 1. Taxonomy of motion planning techniques applied in autonomous driving scenarios.

method is its interpretability, enabling the identification of
defective modules when malfunctions or unexpected sys-
tem behaviour occur. The main methods employed for this
include artificial potential field-based methods, graph search-
based methods, random sample-based methods, and discrete
optimization-based methods [18], [19].

The artificial potential field method is a virtual force
method proposed in [20]. It abstracts the vehicle motion as a
type of artificial gravitational field. The target point produces
‘‘gravity’’ and the obstacle produces ‘‘repulsive force’’ on the
vehicle. The algorithm of this method is concise in math-
ematical description and has good real-time performance,
but easily falls into the local optimal solution problem [21].
Among the methods based on graph search, A* and D* algo-
rithms are commonly used in [22], [23], and [24]. Although
these algorithms are widely used in the field of robotics,
their planned paths fail to satisfy the non-integrity constraints
of vehicles and are computationally intensive and time-
consuming. The best-known random sample-based method
is Rapidly Exploring Random Tree (RRT) [25] which can
efficiently solve high-DOF robotmotion planningwith differ-
ential constraints. It is difficult, however, to utilize the domain
knowledge from the structured environment for quick conver-
gence, and the computed trajectory is generally low quality
and thus cannot be used directly without a post-processing
step [26], [27], [28]. The algorithm proposed in [29] can gen-
erate high-performance trajectories given enough planning
time. The long convergence to optimal trajectory computation
time makes it unsuitable in rapidly changing environments,

however. The discrete optimization-based method discretizes
the state space and utilizes mathematical processes such as
numerical integration and differentiation to generate the solu-
tion space for a limited number of candidate paths, before
solving the optimal path by establishing an optimization
expression. This method has been widely used in recent
years because of its low computation and excellent real-time
performance [30], [31], [32].

The work in [30] performs local path planning based on the
discrete optimization-based method. The major drawback of
this method is that, while it considers path safety, it ignores
the effect of obstacle size on evaluating the safety of candidate
paths. In certain scenarios, the optimal solution may not
be unique for ensuring path safety, and the same obstacle
avoidance action is taken regardless of the obstacle’s size.
Furthermore, the deviation from the road center line is not
taken into account, which means that the vehicle may not
actively return to the center line after avoiding obstacles. This
can trigger the lane departure warning system frequently and
increase the risk of collision due to lane departure.

To sum up, learning-based methods, artificial potential
field methods, graph search-based methods, and random
sample-based methods are prone to problems such as lack-
ing interpretability, falling into a local optimum, requiring
a large amount of calculation, being time-consuming, and
having difficulty describing the relationship between vehicles
and roads. However, discrete optimization-based methods
have better real-time performance, which is why we use
this kind of method in our proposed work rather than other
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mentioned methods. Furthermore, in this paper, our study
is path planning for static obstacle avoidance based on
discrete optimization methods which belong to algorithm-
based methodology. Our research purpose is not to compare
the learning-based methodology and the algorithm-based
methodology to find their strength and weakness.

B. CONTRIBUTIONS
Considering the strengths and weaknesses of the above
methods, in order to solve the trajectory planning problem
in real time for autonomous driving, we propose a new
multi-objective path planning algorithm for static obstacle
avoidance based on discrete optimization methods. Our main
contributions can be summarized as follows:

• We propose an efficient trajectory planning algorithm
framework. To describe the complicated three-
dimensional motion of the vehicle, our approach first
uses the Frenet frame to decouple the vehicle’s move-
ment into two orthogonal movements: one longitudinal
movement along the driving guideline and one lateral
movement perpendicular to the road center line. Then,
the state space is discretized to generate starting and
ending position points for the path. Trajectory solution
spaces are generated for both movements by connecting
the sampled end conditions to the initial condition using
quintic or quartic polynomials. The longitudinal and
lateral trajectories are then combined to generate the
trajectory sets. A set of driveable candidate trajectories
are screened out through vehicle kinematics collision-
avoidance constraints. Finally, the optimal trajectory is
selected by minimizing a predefined cost function for-
mulated for optimal path planning, taking into account
comfort, safety, and road center line deviation.

• To evaluate the safety of candidate trajectories,
we include obstacle size as a novel feature for consid-
eration and calculate the safety loss of each candidate
trajectory using the variation of the Gauss-Laplace
operator.

• We demonstrate the performance of our proposed
algorithm in four traffic scenarios. The experimental
results show that the algorithm can generate optimal
paths for a straight road, curvy road, intersection and
U-shaped road, allowing autonomous vehicles to safely
and comfortably avoid obstacles and complete the path
planning from start to endpoint. On the straight road,
the mean value of Jjerk decreases by 13.47% and the
mean value of Joffset decreases by 63.72 %. On the curvy
road, the mean value of Jjerk decreases by 32.19% and
the mean value of Joffset decreases by 13.86%. On the
intersection scenario, the mean value of Jjerk decreases
by 59.36% and the mean value of Joffset decreases by
44.36%. On the U-shaped scenario, the mean value of
Jjerk decreases by 18.60% and the mean value of Joffset
decreases by 45.56%.

The remainder of this paper is structured as follows: we
introduce the Frenet and Cartesian frames in Section II,

FIGURE 2. Vehicle motion in the Frenet and cartesian frames.

present and illustrate the proposed algorithm in Section III,
show the algorithm evaluation results in Section IV, before
finally, concluding the paper and discussing potential avenues
for future work in Section V.

II. FRENET AND CARTESIAN FRAMES
A. FRENET FRAME FOR VEHICLE MOTION
As shown in Figure 2, in the Frenet frame, the center line of
the road is generally selected as the reference line. The direc-
tion along the reference line is the s-axis, and the direction
perpendicular to the reference line is the d-axis [33], [34],
[35], [36].

Since the s-axis and d-axis are perpendicular to each other
and the s-axis is parallel to the lane line, it is easier to
describe the relationship between vehicle motion and road.
Compared to the Cartesian frame, the Frenet frame simplifies
the calculation of the offset distance of the vehicle from the
road center line and the driving distance along the lane line
without requiring consideration of road curvature. This coor-
dinate system is widely used in path planning research for
autonomous vehicles, robots, and unmanned aerial vehicles
(UAVs) [37], [38], [39], [40], [41].

B. FROM FRENET FRAME TO CARTESIAN FRAME
As shown in Figure 3, the ego vehicle often needs to adjust
its driving trajectory due to the presence of other vehicles
and obstacles, instead of strictly following the reference line
(i.e., the road center line). When in the Cartesian frame,
we can describe the current state of the ego vehicle as[
x⃗, θx , κx , vx , ax

]
, where x⃗ represents the vehicle’s position

at Q(x, y), and n⃗x and t⃗x are the unit normal and tangent
vectors of the vehicle’s motion trajectory at Q. Additionally,
θx denotes the angle between x⃗ and the x-axis, κx represents
the curvature at Q, vx is the velocity of the ego vehicle, and
ax is the vehicle’s acceleration. On the other hand, in a Frenet
frame, the point P represents the projection of the vehicle’s
position point Q onto the reference line. The angle between
r⃗ and the x-axis is denoted by θr , while n⃗r and t⃗r denote the
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FIGURE 3. Transformation from Frenet frame to cartesian frame.

unit normal and tangent vectors of the reference line at point
P. The vehicle’s status can typically be described using the
vector

[
s, ṡ, s̈, d, ḋ, d̈, d ′, d ′′

]
, where the distance between P

and Q corresponds to the transverse displacement d , and the
curve distance from the start point of the reference line to
P represents the longitudinal displacement s. Additionally,
d ′ denotes the first derivative of d with respect to s (i.e.,
d ′

=
dd
ds ), while d

′′ denotes the second derivative of d with
respect to s (i.e., d ′′

=
dd ′

ds ).
The equation of vehicle status in the Cartesian frame can

be written as follows:

xx = xr − d sin θr

yx = yr + d cos θr

θx = arctan
(

d ′

1−krd

)
+ θr ∈ [−π, π]

vx =

√
[ṡ (1 − krd)]2 + (ṡd ′)2

ax = s̈ 1−krdcos1θ
+

ṡ2
cos1θ

·[
d ′

(
kx

1−krd
cos1θ) − kr

)
−

(
k ′
rd + krd ′

)]
kx =

((
d ′′

+
(
k ′
rd + krd ′

)
tan1θ

) cos2 1θ
1−krd

+ kr
)

(1)

where 1θ = θx − θr ; κr is the curvature at point P.

III. PROPOSED ALGORITHM
A. ALGORITHM OVERVIEW
In a Cartesian frame, since the lateral and longitudinal
motions of the vehicle are coupled, the calculation of vehicle
motion is complex and large. Therefore, the Frenet frame is
utilized to decouple the lateral and longitudinal motion of the
vehicle. Furthermore, since the vehicle driving environment
is a non-convex problem, and an optimal solution cannot be
obtained, the non-convex problem is converted into a convex
problem by discretizing themotion space. Finally, the optimal
path is calculated according to the cost function and related
constraints.

The framework of the proposed algorithm can be seen in
Figure 4 (a). The algorithm consists of two main stages: tra-
jectory generation in the Frenet frame and optimal trajectory
selection.

In the stage consisting of trajectory generation in the Frenet
frame, the main steps are as follows:

1) SPATIAL DISCRETIZATION
The road width is parameterized at 1d intervals along the
d-axis, the upper boundary of the road is droadwidth, and the
lower boundary is −droadwidth.

2) START/END STATUS INITIALIZATION
The statuses of the start and end trajectory points affect
the generation of the path. Since the Frenet frame decou-
ples the vehicle motion into lateral and longitudinal motion,
the start and end statuses along the d-axis are denoted as[
ds, ḋs, d̈s, di, ḋi, d̈i

]
, where ds is the coordinate of the start

trajectory point along the d-axis, and di denotes the coor-
dinates of the end trajectory point along the d-axis. In this
paper, we assume the autonomous vehicle is under adap-
tive cruise control, and the desired speed of the vehicle is
maintained in the forward direction, so the start and end
statuses along the s-axis are [ss, ṡs, s̈s, ṡi, s̈i], where ss is the
coordinate of the start trajectory point along the s-axis; si is
the coordinate of the end trajectory point along the s-axis.

3) TRAJECTORY GENERATION
Given the initial and final states of the vehicle along the
d-axis as

[
ds, ḋs, d̈s, di, ḋi, d̈i

]
, a set of six equations can be

formulated to solve the polynomial coefficients, enabling the
representation of the trajectory in the d direction using a
quintic polynomial. Similarly, for the s-axis, with its start and
end states denoted as [ss, ṡs, s̈s, ṡi, s̈i], the trajectory can be
formulated using a quartic polynomial. Then, the planning
cycle T is discretized by 1t , and the obtained time series
[0, 1t, . . . ,T ] is brought into the d-axial and s-axial trajec-
tory equations, and the d-axial and s-axial coordinates of the
trajectory points in each trajectory are calculated. Finally, the
corresponding d-axial and s-axial coordinates are combined
to obtain the planned trajectories. The further details are
demonstrated in Section III-B and Section III-C.

In the optimal trajectory selection stage, the main steps are
as follows:

4) TRAJECTORY POINT COORDINATE TRANSFORMATION
According to Equation 1, the generated trajectories in the
Frenet frame are remapped to the global Cartesian frame.

5) TRAJECTORY CHECK
A trajectory essentially consists of several trajectory points
containing spatial-temporal information, i.e., location, cur-
vature, heading, speed and acceleration, etc. In this paper,
the trajectory check only examines the collision, acceleration
and curvature of each trajectory point on the path. Through
Section III-A2 and Section III-A3, we obtained the trajectory
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equations and the trajectory points. In this step, a virtual
ego vehicle is mapped at each trajectory point, and whether
there is a collision between the boundary of the virtual ego
car and the boundary of the obstacle is checked, as depicted
in Figure 4 (b). Considering the limitations of the vehicle
kinematics and dynamics, the acceleration and curvature of
each trajectory point on the trajectory are checked using
hard constraints. The trajectories are filtered out if there is
a trajectory point in the trajectory that cannot satisfy the
collision-free, acceleration and steering constraints. Detailed
operations and derivation processes are discussed within
Section III-D. Through this step, the candidate trajectories are
generated and collision-free.

6) OPTIMAL TRAJECTORY SELECTION
The total loss of each trajectory is calculated, and the trajec-
tory with the minimum total loss is chosen as the optimal
trajectory. The cost function is composed of three indica-
tors: comfort, trajectory safety, and trajectory anti-deviation.
These three indicators are defined in detail in Section III-E.

7) THE START POINT STATUS UPDATE
The planning frequency is denoted as 1/1t . As the ego vehi-
cle moves forward, its position changes continuously. Thus,
in our trajectory planning approach, the current position of
the vehicle is used as a reference point for generating the next
trajectory. We designate the current position of the vehicle as
(x0, ym0), and calculate the trajectory point (x1, ym1) which is
1t seconds after the current time. This point serves as the new
starting point for the subsequent round of trajectory planning.

B. LATERAL MOTION TRAJECTORY PLANNING
Lateral motion planning involves the tasks of obstacle avoid-
ance and lane change. As Equation 2 shows, the lateral
motion trajectory d(t) can be modelled based on a quintic
polynomial:

d(t) = cd0 + cd1t + cd2t2 + cd3t3 + cd4t4 + cd5t5 (2)

where cd0, cd1, cd2, cd3, cd4 and cd5 are the coefficients of a
quintic polynomial.

Where ḋ(t) is the derivative of Equation 2:

ḋ(t) = cd1 + 2cd2t + 3cd3t2 + 4cd4t3 + 5cd5t4 (3)

and d̈(t) is the derivative of Equation 3:

d̈(t) = 2cd2 + 6cd3t + 12cd4t2 + 20cd5t3 (4)

The known statuses of the start point and end point at
the time of ts and te are introduced into Equation 2 to
Equation 4:

d (ts)
ḋ (ts)
d̈ (ts)
d (te)
ḋ (te)
d̈ (te)

 =



1 ts ts2 ts3 ts4 ts5

0 1 2 ts 3 ts2 4 ts3 5 ts4

0 0 2 6 ts 12 ts2 20 ts3

1 te te2 te3 te4 te5

0 1 2 te 3 te2 4 te3 5 te4

0 0 2 6 te 12 te2 20 te3




cd0
cd1
cd2
cd3
cd4
cd5

 (5)

The following Equation 6 can be obtained by modifying
Equation 5, and the matrix of coefficients can be calculated
as:

cd0
cd1
cd2
cd3
cd4
cd5

 =



1 ts ts2 ts3 ts4 ts5

0 1 2 ts 3 ts2 4 ts3 5 ts4

0 0 2 6 ts 12 ts2 20 ts3

1 te te2 te3 te4 te5

0 1 2 te 3 te2 4 te3 5 te4

0 0 2 6 te 12 te2 20 te3



−1 

d (ts)
ḋ (ts)
d̈ (ts)
d (te)
ḋ (te)
d̈ (te)

 (6)

C. LONGITUDINAL MOTION TRAJECTORY PLANNING
In this paper, when planning the longitudinal motion trajec-
tory, we assume the vehicle’s speed remains constant along
the reference line direction. Therefore, the position config-
uration of the endpoint can be disregarded for now, and
the trajectory can be represented by a quartic polynomial
equation, as shown in Equation 7.

s(t) = cs0 + cs1t + cs2t2 + cs3t3 + cs4t4 (7)

where cs0, cs1, cs2, cs3 and cd4 are the coefficients of a quartic
polynomial, where ṡ(t) is the derivative of Equation 7:

ṡ(t) = cs1 + 2cs2t + 3cs3t2 + 4cs4t3 (8)

and where s̈(t) is the derivative of Equation 8:

s̈(t) = 2cs2 + 6cs3t + 12cs4t2 (9)

Equation 10 can be obtained from Equations 7-9, with the
known configuration of the start point and the end point at the
time of ts and te:

s (ts)
ṡ (ts)
s̈ (ts)
ṡ (te)
s̈ (te)

 =



1 ts ts2 ts3 ts4

0 1 2 ts 3 ts2 4 ts3

0 0 2 6 ts 12 ts2

1 te te2 te3 te4

0 1 2 te 3 te2 4 te3

0 0 2 6 te 12 te2




cs0
cs1
cs2
cs3
cs4

 (10)

Finally, the coefficients of the quartic polynomial can be
obtained by transforming Equation 10:

cd0
cd1
cd2
cd3
cd4

 =


1 ts ts2 ts3 ts4

0 1 2 ts 3 ts2 4 ts3

0 0 2 6 ts 12 ts2

0 1 2 te 3 te2 4 te3

0 0 2 6 te 12 te2


−1 

s (ts)
ṡ (ts)
s̈ (ts)
ṡ (te)
s̈ (te)

 (11)

D. CANDIDATE PATH GENERATION
Figure 4 shows that collisions can occur on the generated
trajectories, and that there are limitations on the vehicle’s
motion and dynamic characteristics. To enhance the system’s
response time, trajectories that fail to meet the constraints are
eliminated through trajectory checking. The remaining trajec-
tories are then presented as candidate paths for the subsequent
module to choose the best path. The primary components
of the check involve collision, curvature, and acceleration
checks.
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FIGURE 4. Proposed algorithm framework. (a) the flowchart of the algorithm; (b) the illustration of the proposed algorithm in a real traffic scenario.

1) COLLISION CHECK
Circles are used as bounding boxes for collision check. The
conditions for passing the collision check are as follows:(

xij − xob
)2

+
(
yij − yob

)2
< (rcar + rob)2 (12)

where (xob, yob) is the coordinates of a given obstacle; (xij, yij)
are the coordinates of the trajectory point j on trajectory i; rcar
is the radius of the circle bounding box of the ego vehicle; rob
is the radius of the circle bounding box of the ego vehicle.

2) CURVATURE CHECK
The curvature of each point in the generated trajectories can
be calculated using Equation 1.

κx[ij] ⩽ κmax, 0 ⩽ j ⩽ N (13)

where κmax is the maximum allowed curvature, and N is the
number of trajectory points.

3) ACCELERATION CHECK
The acceleration of each point in the generated trajectories
can also be calculated using Equation 1.

ax[ij] ⩽ amax, 0 ⩽ j ⩽ N (14)

where amax is the maximum allowed acceleration.

E. COST FUNCTION
After the trajectory check, a set of candidate trajectories is
generated. However, the number of candidates remains large,
and we must choose a single trajectory to follow. To do
so, we develop a cost function that assesses each candidate

trajectory and selects the one with the lowest cost as the most
optimal. This paper’s cost function is designed based on three
criteria: the trajectory’s comfort, safety, and deviation from
the road’s center line. This cost function J [i] is defined in
Equation 15:

J [i] = w0Jjerk[i] + w1Jsafety[i] + w2Joffset[i] (15)

where Jjerk, Jsafety and Joffset are the cost function of jerk,
trajectory safety, and offset from the road center line respec-
tively, and w0, w1, w2 are the weights of the three cost
functions, which determine the driving style of the vehicle.

1) JERK COST FUNCTION
Jerk is one of the most significant indicators for measuring
the quality of planned trajectories. In general, the derivative
of acceleration is used to assess jerk. Since the Frenet frame
decouples transverse and longitudinal motion, the cost func-
tion of jerk can be constructed by summing the derivatives of
the transverse and longitudinal accelerations.

Jjerk[i](t) =

∫ t1

t0

...
d 2(t)dt +

∫ t1

t0

...
s 2(t)dt (16)

2) TRAJECTORY SAFETY COST FUNCTION
While all candidate paths are free of collisions, their safety
levels may still differ due to their proximity to obstacles.
It is evident that trajectories that are further from obstacles
are safer. The [30] proposes a method to assess the safety of
candidate trajectories based on their distance from obstacles,
but this approach fails to account for the impact of obstacle
size on trajectory safety. When the distance between the
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FIGURE 5. Safety cost of each candidate trajectory.

candidate path and the center of the obstacle is the same, the
actual distance from the candidate trajectory to the obstacle’s
edge varies. Therefore, the safety of the candidate trajectory
should be higher when faced with smaller obstacles, and the
cost of safety should be lower.

In this paper, we draw inspiration from the Gauss-Laplace
operator and the concept of convolution in the computer
vision field to construct a convolution kernel, denoted as f (x),
and perform a convolution operation on the collision value,
colli_V , to obtain the safety cost of each trajectory.

Jsafety[i] = f ∗ colli_V [i] (17)

The definition of the convolution kernel f (x) is as follows:

f (x) = g(x) + min(|g(x)|) (18)

where g(x) is the variation of Gauss Laplace operator:

g(x) =
1

2πσ
· e−

(x−u)2

2σ2 ·
σ 2

− x2

σ 4 (19)

and σ and u are the standard deviation and mean value,
respectively.

Since any plane geometry can be surrounded by its circum-
scribed circle, in this paper, we use the circumscribed circle as
the mathematical model to describe obstacles. The collision
value colli_V is represented by the size of the largest obstacle
on the trajectory:

colli_V [i] =

{
rob[i], collision happen
, collision free

(20)

where rob is the radius of the obstacle-circumscribed circle.
As shown in Figure 5, the collision value reflects whether

a collision occurs on the generated trajectories for different
obstacle sizes. The safety cost of each candidate trajectory
can be effectively calculated according to the size and dis-
tribution of the obstacles. The closer to a large obstacle, the
higher the safety cost of the trajectory and the lower the safety
of the trajectory. The closer to the dense obstacle pile, the
higher the safety cost and the lower the trajectory safety.

TABLE 2. Experiment parameters.

3) TRAJECTORY ANTI-DEVIATION COST FUNCTION
While driving, deviating from the center line of the road can
result in insufficient space to maneuver around obstacles,
requiring a large steering angle to avoid them. This driv-
ing behaviour can cause inconvenience to other drivers and
increase the risk ofmisjudgments, leading to traffic accidents.
Additionally, it may frequently trigger lane departure alarms,
leading to functional conflicts between modules in the driv-
ing system. Therefore, when selecting the optimal trajectory,
it is crucial to ensure that the trajectory follows the road’s
center line as closely as possible. In this paper, we design
a cost function that calculates the integral of the square of
the transverse displacement, d , of the candidate trajectory to
satisfy this requirement.

Joffset [i] =

∫ s1

s0
d2(s)ds/

∫ t1

t0
s2(t)dt (21)

Since the planning time has been discretized, the
Equation 21 also can be expressed as follows:

Joffset[i] =

N∑
j=0

d2ij/
N∑
j=0

s2ij (22)

where N is the number of trajectory points in trajectory i.

IV. SIMULATION AND ANALYSIS
In the research on path planning, it is commonly assumed
that map, localization and detection information have been
obtained, without delving into the discussion of the imple-
mentation of front-end module functionalities in autonomous
driving systems. Referring to the traffic scenarios in current
public datasets of perception field [42], [43], [44], [45] and
the simulation environment setting in [46], [47], and [48].
In the simulation, a straight road, a curvy road, an intersec-
tion scenario and a ‘‘U’’ shaped road are built in a Python
environment, and several static obstacles of different sizes
are set up on the roads. The experiments in this paper are
divided into two parts: the first part analyzes the impact
of different cost functions on trajectory generation, and the
second part compares the advantages and disadvantages of
the methods proposed in this paper and that proposed in [30].
The simulation parameters are shown in Table 2.
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FIGURE 6. Influence of cost function on trajectory selection.

A. INFLUENCE OF COST FUNCTION ON TRAJECTORY
SELECTION
As shown in Figure 6 (a) and (b), different cost functions
can result in different optimal trajectories on both straight
and curvy roads. This paper analyzes the impact of three
different cost functions on trajectory selection. When the cost
function only takes into account jerk, the vehicle will attempt
to drive in its current direction without colliding. While this
can provide a comfortable ride, it may not be safe enough as
it can bring the vehicle too close to obstacles. The second cost
function considers both Jjerk and Jsafety indicators. Since the
safety indicator in this paper takes into account the size of
the obstacle, it is clear that under the influence of the safety
indicator, the vehicle will choose the corresponding avoid-
ance distance based on the size of the obstacle. However, the
resulting trajectory may still deviate from the road center line
after obstacle avoidance. The third cost function considered
in this paper, which takes into account jerk, safety, and offset

FIGURE 7. Comparison of global routing on a straight road.

from the road center line, produces a smoother trajectory that
maintains a safe distance from obstacles and returns to the
center line of the road after obstacle avoidance.

B. PERFORMANCE OF PROPOSED ALGORITHM
To gauge the feasibility and effectiveness of the pro-
posed local path planning algorithm, we simulated both the
algorithm proposed in this paper and the algorithm proposed
in reference [30], and analyzed their performance on the
following four traffic scenarios. The results of comparisons
are summarized in Table 3.

1) STRAIGHT ROAD SCENARIO
In order to validate the ability of the algorithm to continuously
avoid obstacles, this paper builds a straight road scene with
static obstacles. Figure 7 illustrates that both the method
proposed in this paper and the one in reference [30] can
successfully avoid obstacles and reach the destination safely.
However, the global routing of the method proposed in ref-
erence [30] changes greatly, almost forming an ‘‘s’’ curve,
and the trajectory cannot return to the center of the road after
avoiding obstacles. This is because the safety cost function of
the trajectory in reference [30] is insensitive to the size of the
obstacle, and it measures the safety of candidate trajectories
mechanically by the distance from the obstacle. The method
tends to choose trajectories far away from the obstacle as
the optimal path when avoiding obstacles, and it lacks the
constraint of the center line keeping, which results in the
lateral avoidance distance often being too large. In contrast,
the method proposed in this paper takes into account the
three indicators of Jjerk, Jsafety, and Joffset, which enables it
to avoid obstacles safely and return to the road center line
after avoiding obstacles. The global route calculated in this
paper is relatively smoother.

Figure 8more clearly illustrates the deviation of the vehicle
from the center line of the road. The proposed method in this
paper outperforms the method in reference [30] in terms of
returning the vehicle to the road center line after avoiding
obstacles, thus reducing the risks and danger caused by mak-
ing a large detour to avoid obstacles. The mean value of Joffset
decreases by 63.72%. Figure 9 shows that on the straight
road, during the first 20 seconds, the algorithm proposed in
this paper requires the consideration of the road center line
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FIGURE 8. Comparison of road center line offset on a direct road.

FIGURE 9. Comparison of comfort on a direct road.

offset, causing Jjerk to be slightly higher than the algorithm
proposed in reference [30]. However, in the subsequent obsta-
cle avoidance process, Jjerk significantly improves, resulting
in a 13.47% reduction in the mean value of Jjerk throughout
the process.

2) CURVY ROAD SCENARIO
To verify the effectiveness of the algorithm in continuous
curvy road scenes, an S-shaped road scene was constructed.

Figure 10 demonstrates the complete driving trajectory of
the vehicle from the starting point to the ending point on the
‘‘S’’ shaped road. The vehicle on the curvy road uses the cost
function proposed in this paper to start obstacle avoidance
at approximately 22m and successfully returns to the road
center line after avoiding the obstacle due to the influence
of Joffset. On the other hand, the method proposed in [30]
starts obstacle avoidance at approximately 25m. Although
the longitudinal avoidance distance is shorter than that of
the method proposed in this paper, the absence of Joffset as
a constraint means that the vehicle does not return to the
road center line until 60m after avoiding the obstacle, despite
constantly approaching the road center line.

FIGURE 10. Comparison of global routing on a curvy road.

FIGURE 11. Comparison of road center line offset on a curvy road.

As demonstrated in Figure 11, from approximately 20 s
to 40 s, the Joffset in this paper is larger, that is because our
method starts to avoid the static obstacle at approximately
22m, earlier than the method proposed in [30] and returns
to road center line in time. In terms of the entire process, the
mean value of Joffset decreases 13.86% on the curvy road.

Figure 12 shows a comparison of Jjerk. On the curvy road,
the Jjerk in the entire process is smaller, and the mean value of
Jjerk decreases by 32.19%. It indicates the algorithm proposed
in this paper can provide better driving comfort.

3) INTERSECTION SCENARIO
Intersections are one of the most common traffic scenarios.
To evaluate the performance of the algorithms, an intersection
traffic scenario is constructed.

Figure 13 shows the complete driving trajectory of the
vehicle during the obstacle avoidance process at the inter-
section. Both the algorithms proposed in this paper and in
reference [30] are effective in obstacle avoidance. How-
ever, in this paper, the cost function considers the impact of
obstacle size on road safety, enabling effective handling of
distances maintained with obstacles of varying sizes. Addi-
tionally, considering the deviation from the road center line,
the path actively returns to the road center line after evading
obstacles. On the other hand, reference [30] only relies on
the distance between obstacles to evaluate the safety value of
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FIGURE 12. Comparison of comfort on a curvy road.

FIGURE 13. Comparison of global routing in intersection scenario.

candidate paths. Consequently, it tends to keep a maximum
distance from obstacles during obstacle avoidance, resulting
in less smooth and more variable trajectories. Furthermore,
due to the lack of consideration for maintaining the lane
center line, it often fails to return to the road center line
after obstacle avoidance and continues in the current direction
under the influence of Jjerk.

Figure 14 illustrates the deviation from the road center line
throughout the entire trajectory. From approximately 0 s to
18 s, both algorithms exhibit similar deviations from the road
center line. However, between 18 s and 35 s, the algorithm
proposed in this paper, influenced by Jjerk and Joffset, aims to
maintain the current direction of travel while ensuring a safe
distance from the second encountered obstacle. On the other
hand, the algorithm in reference [30] tends to keep a maxi-
mum distance from obstacles, leading to a deviation towards
the opposite side of the lane center line. Due to the absence of

FIGURE 14. Comparison of road center line offset in intersection scenario.

FIGURE 15. Comparison of comfort in intersection scenario.

constraints on road center line deviation, the effect of the Jjerk
results in a slightly larger turning radius. Additionally, similar
to other traffic scenarios, it is challenging for the algorithm to
return to the road center line even on straight road segments
after obstacle avoidance. In contrast, the trajectory planned
by the algorithm in this paper appropriately selects a safe
distance from obstacles while ensuring a smooth return to the
road center line after obstacle avoidance. The mean value of
Joffset decreases 44.36%.

Figure 15 shows a comparison of Jjerk in the intersection
scenario. It is evident that there is a significant variation in
jerk values during obstacle avoidance. In this traffic scenario,
the algorithm proposed in this paper maintains a good level
of driving comfort and decreases Jjerk by 59.36% compared
to the algorithm proposed in the reference [30].

4) U-SHAPED ROAD SCENARIO
U-shaped roads are also a common and challenging traffic
scene. Therefore, in this study, a U-shaped road is con-
structed, and static obstacles of different sizes are placed at
the turning points of the U-shaped road.
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TABLE 3. Performance comparison.

FIGURE 16. Comparison of global routing on a U-shaped road.

Figure 16 depicts the entire driving routing of continuously
avoiding static obstacles in the U-shaped road. Both algo-
rithms can effectively avoid obstacles. However, similar to
other simulated traffic scenarios, in reference [30] the evalu-
ation of the safety values of the candidate paths is based solely
on the distance from the obstacles. As a result, regardless of
the size of the obstacles, the algorithm tends to maintain a
safe distance by deviating as far as possible from the obstacles
while ensuring comfort. This leads to a significant deviation
from the road center line in the planned path, especially at
the turning points of the U-shaped road. In contrast, this study
incorporates the size of the obstacles into the evaluation of the
safety values of the candidate paths. It selects an appropriate
deviation distance based on the size of the obstacles and
actively seeks to return to the road center line after obstacle
avoidance, within the constraints of the offset.

Figure 17 shows the comparison of road center line devi-
ation on the U-shaped road. It can be observed that the
proposed method in this paper is able to maintain driving

FIGURE 17. Comparison of road center line offset on a U-shaped road.

FIGURE 18. Comparison of comfort on a U-shaped road.

near the road center line under the dual challenges of obstacle
avoidance and turning. However, the method proposed in
reference [30] deviates more from the center line due to the
lack of the constraint of Joffset. The mean value of deviation
decreases by 45.56%. Figure 18 is the comparison of driving
comfort. From 0 s to 50 s, there is little difference in jerk
values between the two algorithms. However, from 50 s to
80 s, the proposed method in this paper shows a significant
improvement in jerk compared to the method proposed in
reference [30]. This is because, when facing the last obstacle,
the algorithm in this paper chooses a path that aligns roughly
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with the original direction after the turn. In contrast, the
method in the reference always tends to stay as far away
from the obstacle as possible, resulting in increased Jjerk due
to excessive manoeuvres. The mean value of Jjerk decreases
by 18.60%.

V. CONCLUSION
In this paper, we propose a local path planning algorithm for
autonomous driving based on the Frenet frame. The algorithm
first decouples the transverse and longitudinal motion using
the Frenet frame and generates a cluster of candidate tra-
jectories in the s − d coordinate system based on the start
and end point state information. The algorithm then selects
the optimal trajectory based on a new cost function that
considers the comfort, safety, and offset from the road center
line. In the candidate trajectory selection stage, we propose a
new cost function to select the optimal trajectory. This cost
function is designed to comprehensively consider comfort,
safety, and offset from the road center line. We also consider
the size of obstacles in the cost function of trajectory safety,
which further improves performance. By minimizing the cost
function, the algorithm selects the optimal trajectory that sat-
isfies the constraints and provides the best driving experience.
Experimental results show that different cost functions will
lead to different final optimal trajectories.

Compared with the reference method proposed in [30],
the trajectories planned on the straight road, curvy road,
intersection and U-shaped road based on the method pro-
posed in this paper can safely avoid obstacles and actively
return to the road center line. In addition, the mean value
of Jjerk respectively decreased by 13.47%, 32.19%, 59.36%
and 18.60% on the straight road, curvy road, intersection
and U-shaped road indicating that the trajectory planned by
our method is more comfortable. The mean value of Joffset
decreased by 63.72%, 13.86%, 44.36%, and 45.56% on the
straight road, curvy road, intersection and U-shaped road,
respectively, which shows that our algorithm is capable of
swiftly guiding a vehicle back to the center line of the road
after evading obstacles.

The algorithm proposed in this paper only addresses the
static obstacle avoidance problem in path planning and
doesn’t account for dynamic obstacles. As a result, our future
research will concentrate on tackling the challenge of avoid-
ing dynamic obstacles.
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