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Abstract—Automated driving technology has garnered increas-
ing attention due to its potential to reduce traffic accidents,
alleviate congestion, and enhance travel convenience. As a key
component of automated driving technology, trajectory planning
plays a pivotal role in determining feasible trajectories in
different traffic scenarios. However, there is currently insufficient
research on the performance of different curve models in lane-
changing scenarios. In addition, the conventional speed planning
method (DP&QP) often ignores vehicle kinematics and traffic
scenarios when generating convex spaces, resulting in inefficiency
and longer run time. In path planning, this paper compared the
performance of Dubins, Sine, Bézier, and B-spline curves in lane
change scenarios, ultimately selecting the B-spline curve as the
lane change path model to ensure that the vehicle remains close
to the center line of the road after a lane change. In speed
planning, we introduce a novel method for directly generating
a convex space, taking into account the kinematics of the ego
vehicle and the current traffic conditions. This approach allows
for adaptive adjustments to the speed planning scheme based on
the traffic situation. Compared with the conventional trajectory
planning method ((DP&QP)), this approach significantly reduces
the run time by 32.7%.

Index Terms—Autonomous driving, Path planning, Speed plan-
ning, Cost function, Quadratic program

I. INTRODUCTION

As a critical component of the autonomous driving system,
the trajectory planning module is primarily responsible for
generating a safe, efficient, and comfortable drivable trajectory
based on information from the localization, perception, and
prediction modules [1]. Trajectory planning can be divided
into global trajectory planning and local trajectory planning.
Global trajectory planning focuses on generating the trajectory
for the journey from the starting point to the destination. In
contrast, local trajectory planning, based on the existing global
path, involves planning the vehicle’s specific actions in real
time. It addresses tasks such as avoiding dynamic and static
obstacles, overtaking, and lane changing within a short time
frame. This paper focuses on local trajectory planning for lane
change scenarios [2].

A. Related Work

Local trajectory planning can be further categorized into
the following main groups: sampling-based approaches,

graph search-based approaches, and optimization-based ap-
proaches [3], [4], [5].

The sampling-based approach involves randomly or se-
lectively sampling points in the planning space and then
connecting these points to form trajectories [6]. This method
is suitable for various complex planning problems, includ-
ing high dimensionality, multiple constraints, and dynamic
environments. One of the most typical algorithms is the
Rapidly Exploring Random Tree (RRT) and many researchers
have proposed various improved versions in recent years [7].
However, since the sampled points are generated by random or
limited sampling, the quality of the generated trajectories is
unstable and strongly influenced by the sampling space [8].
In addition, due to the randomness of the sampling, the
computational cost can be high, and real-time performance
cannot be guaranteed when dealing with complex scenarios.

The graph search-based approach involves transforming the
planning space into a node graph and then searching for an
optimal trajectory on this graph based on a heuristic function.
Among the methods based on graph search, the Dijkstra is one
of the most representative algorithms and it finds the short-
est trajectory based on the principle of breadth-first search.
The A* algorithm adds a heuristic function to the Dijkstra
algorithm, allowing a faster search of the trajectory. Various
implementations like D* and D* Lite have been proposed to
enhance search efficiency in more complex scenarios [9], [10].
Although graph search algorithms exhibit strong searching
capabilities and high efficiency, the trajectories they generate
often lack smoothness and may not comply with vehicle
kinematic or dynamic constraints. As a result, they typically
require post-processing for smoothing and further optimization
before they can be directly employed in path planning.

The optimization-based approach formulates the path plan-
ning problem as a convex optimization problem with multiple
constraints. Typically, a cost function is defined based on the
requirements of the planning scenario, and the optimal trajec-
tory is obtained by minimizing the value of the cost function.
Huang et al. adopted a polynomial curve to model the planned
path and designed a safety indicator in the cost function to
evaluate the influence of the obstacle size [11]. Xu et al.
proposed a novel method to generate convex space for solving



the minimum-time speed planning problem [12]. Compared
with the other two approaches, the optimization-based method
can achieve higher efficiency, and low computation cost and
has been widely utilized.

B. Motivations

The PVD trajectory planning approach decomposes the
three-dimensional trajectory problem into two-dimensional
path planning and one-dimensional speed planning [13]. This
significantly reduces complexity, ensuring real-time perfor-
mance. This paper follows the PVD trajectory planning frame-
work.

In this paper, the scenario researched is a lane change,
as shown in Figure 1. The ego vehicle needs to avoid the
upcoming vehicles while changing lanes. In the case of lane
changing, the choice of curve model in path planning is
crucial, in guiding the vehicle to change lanes and at the same
time need to ensure that the steering wheel is back to the right
after changing lanes, but a lot of current research does not
take this requirement into account when choosing the curve
model. In addition, the most typical and widely used method
in speed planning is first to search the s− T graph using the
dynamic planning (DP) algorithm, generate the convex space,
and then use the quadratic planning (QP) algorithm to solve
the optimal speed profile in the convex space. However, this
method primarily tackles the speed planning problem from a
purely mathematical point of view. In the process of creating
the convex space, it ignores the current traffic scenario, the
vehicle’s motion state and kinematic characteristics. This leads
to the complication of a relatively simple problem, resulting
in a waste of computational resources.
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Fig. 1. An Illustration of the Lane Change Scenario with B-spline Curve.

C. Contributions

In path planning, we compared the performance of different
curve models in lane-changing scenarios. Among them, we
selected the B-spline curve as the lane-changing path model
based on the requirements of continuous curvature and zero
curvature at the starting and merging points.

In speed planning, we predict the future motion states of the
ego vehicle based on its current motion state and kinematic
characteristics. This information directly defines the convex
space for speed planning within the s− T graph.

D. Organization

The rest of this paper is organized as follows: The path
planning method and speed planning of the lane change

scenario are shown separately in Section II and Section III. The
simulation results are discussed in Section IV, and Section V
concludes the paper and explores the potential directions for
future research.

II. PATH PLANNING

A. Curve Model Selection
The commonly used curve models for path planning include

the Dubins curve, Sine function curve, Bessel curve, B-spline
curve, etc. However, which curve model is more suitable for
lane-changing scenarios has not been fully explored in current
research. Therefore, this paper compares the performance of
the above curve models in lane-changing scenarios.

As shown in Figure 2, the Dubins curve, sine function curve,
Bessel curve and B-spline curve can all realize the lane change
task and the generated paths are smooth with no significant
differences in path shape.
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Fig. 2. Comparison of Lane Change Paths with Different Curve Models.

Figure 3 shows that the Dubins curve generates a path
with two abrupt changes in curvature. Following this path
would require the vehicle to stop at these discontinuities, adjust
the steering and then continue, which doesn’t meet practical
driving requirements. In addition, the Sine and Bessel curves
produce lane change paths with continuous curvature but non-
zero curvature at the start and end points. This prevents the
steering wheel from returning to its original position after
merging and causes the vehicle to deviate from the centre line
of the road. Therefore, the 3rd-order B-spline curve is chosen
as the lane change model in this paper.
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Fig. 3. Curvature Comparison of Different Curve Models in the Lane Change
Scenario.



B. Candidate Path Set Generation

As shown in Figure 1, the lane change path consists of
two parts: ˚�ABCO and ˚�ODEF . To simplify the path-solving
process, we assume that the ˚�ABCO and the ˚�ODEF are
centrally symmetric with respect to point O. Therefore, it is
only necessary to determine ˚�ABCO. Since the position of
point A depends on the current location of the ego vehicle,
and point B is the midpoint between points A and C. Thus,
the shape of ˚�ABCO depends solely on the positions of points
C and O. By altering the positions of points C and O, a series
of candidate path sets can be generated.

C. Cost Function

To ensure the smoothness and efficiency of the generated
lane-change path, the cost function primarily considers the
curvature and length of the path, denoted as Equation 1.
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where (xi, yi) is the coordinates of waypoint i in the generated
lane path; n is the number of waypoints of the generated lane
path; w1 and w2 represent the weight coefficients for path
smoothness and length, respectively.

III. SPEED PLANNING

For dynamic obstacles, the speed planning module cal-
culates the intersections between the predicted trajectory of
the obstacle vehicle and the planned path in Section II to
generate the s-T graph. The essence of speed planning is the
optimization of a non-convex problem. Since there is no global
optimal solution for non-convex problems, it is necessary to
first transform this non-convex problem into a convex one for
resolution.

A. Convex Space Generation

To improve the response speed and rationality of path
planning, we propose a novel convex space generation method.
This method takes into account the vehicle’s kinematic charac-
teristics and the current traffic scenario. As shown in Figure 4,
there are two convex spaces, namely, region A above the
obstacle area and region B below the obstacle area. Region
A implies that the ego vehicle merges into the lane before
the rear obstacle vehicle arrives, while region B means that
the ego vehicle yields to the rear obstacle vehicle, waits for
it to pass, and then merges into the lane. However, due to
constraints such as the ego vehicle’s speed during lane change,
the maximum allowed acceleration and deceleration in the
vehicle’s kinematics, the speed of the obstacle vehicle, and
the distance from the obstacle vehicle, regions A and B often
cannot both simultaneously meet these constraints. Therefore,
the current traffic situation must be evaluated first.
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Fig. 4. Illustration of constraints on the s-T Graph.

Assuming the ego vehicle moves with uniform acceleration
or deceleration and does not reverse if the ego vehicle can
merge into the lane before the rear obstacle vehicle arrives, it
must satisfy Equation 2.

v0t0 +
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2
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2 > ubt0ob (2)

where v0 is the initial speed of the ego vehicle; t0 is the start
time of the obstacle region; ā is the maximum acceleration of
the ego vehicle; ubt0ob is the upper bound of the obstacle region
at time t0.

The upper boundary Sub
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A can be expressed as Equation 3, if the Equation 2 is true.
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2 āti

2 < SL

SL, v0ti +
1
2 āti
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where SL is the length of the planned path.
The lower boundary Slb

A (t) of the convex space in region A
can be expressed as Equation 4.
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where ubtiob is the upper bound of obstacle region at time ti.
If the ego vehicle can yield to the rear obstacle vehicle, it

must satisfy Equation 5.
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where a is the maximum deceleration of the ego vehicle.
The upper boundary Sub

B (ti) of the convex space in region
B can be expressed as Equation 6, if the Equation 5 is true.
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The lower boundary Slb
B (ti) of the convex space in region

B can be expressed as Equation 7.
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If Equations 2 and 5 are both true, it is necessary to evaluate
the quality of the convex spaces in regions A and B. In this
paper, the area enclosed by the upper and lower boundaries of
the convex spaces in regions A and B within the time interval 0
˜ t0 is used as a measure, as shown in Figure 4. This indicator
reflects the system’s ability to handle unexpected scenarios and
the safety of speed planning solutions. A larger area implies a
stronger ability to handle sudden situations and a safer speed
planning solution.
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B. Speed Profile Formulation
This paper employs the piecewise-jerk method [14] to

model the velocity profile. This approach relies on the Taylor
series to establish the relationship between consecutive points
(ti, si) and (ti+1, si+1) on the velocity profile, as shown in
Equation 9. Furthermore, this method can effectively constrain
every point on the velocity profile, providing greater flexibility
than directly using curve models for modelling.
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Where ∆t = ti+1 − ti; s′(t), s′′(t) and s′′′(t) are the first-
order, second-order, and third-order of speed profile function
s(t) with respect to time parameter t.

C. Optimization Objective Function
We employ the QP algorithm to search for the optimal speed

profile. The objective function takes into account the distance,
speed, acceleration, and jerk of each speed point. The objective
function is denoted as Equation 10.
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Where v̄ and v are the maximum and minimum speed,
respectively; jerk and jerk are the maximum and minimum
jerk values.

IV. EXPERIMENT RESULTS

In this section, we analyze the results of path planning
and speed planning algorithms proposed in this paper. The
simulations were performed in Matlab on an Intel Core i9 at
3.00 GHz.

A. Path Planning Results

As depicted in Figure 5, a cluster of candidate paths is
generated. Utilizing Equation 1, the optimal path is derived
from these candidates. This optimal path enables the ego
vehicle to change lanes smoothly.

the optimal path
the candidate path

Fig. 5. The optimal path selection.

B. Speed Planning Results

In case 1, the initial speed of the ego vehicle is 9 m/s,
since the initial speed is low, in the s − T graph, the pro-
posed speed planning algorithm chooses the region below the
obstacle area as the convex space and successfully generates
the speed profile. As illustrated in Figure 6 (b), (c), and (d),
the ego vehicle first decelerates to yield the right-of-way to
the approaching obstacle vehicle, then accelerates to change
lanes after the obstacle vehicle passes, and finally maintains
a constant speed. The velocity, acceleration, and jerk profiles
are smooth and continuous making the lane change process
stable and feasible.

In case 2, as illustrated as Figure 7 (a), the initial speed
of the ego vehicle is 15 m/s, and since the initial speed
is high, the proposed speed planning algorithm selects the
region above the obstacle area as the convex space to search
the optimal speed profile. In addition, as shown in Figure 7
(b), (c), and (d), to make the process of lane change safe
and comfortable, the ego vehicle first decelerates slowly to
change lanes, then accelerates to merge into the target lane.
Throughout the process, the velocity, acceleration, and jerk
profiles are smooth and continuous, ensuring feasibility during
actual driving.

As shown in Table I, the conventional method (DP&QP)
requires 107.4 ms to generate the optimal velocity profile. In
contrast, our proposed method achieves the same task in just
72.3 ms. This represents a remarkable reduction in the average
running time, with a decline rate of 32.7%.
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Fig. 6. The speed planning results in case 1: (a) the speed profile in s− T
graph; (b) the optimal velocity; (c) the optimal acceleration; (d) the optimal
jerk.
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Fig. 7. The speed planning results in case 2: (a) the speed profile in s− T
graph; (b) the optimal velocity; (c) the optimal acceleration; (d) the optimal
jerk.

V. CONCLUSION

In this paper, we propose a novel trajectory planning al-
gorithm using the PVD framework. For path planning, we
compared the performance of Dubins curves, Sine curves,
Bezier curves, and B-spline curves for lane-changing scenar-
ios. Ultimately, we selected the B-spline curve as the lane-

TABLE I
AVERAGE RUN-TIME COMPARISON.

Method Time (ms) Decline Rate

DP&QP 107.4 /

Ours 72.3 32.7%

changing path model, ensuring that the planned path has
zero curvature at both the starting and ending points, thus
preventing the ego vehicle from deviating from the lane center
after changing lanes.

For speed planning, we propose a new method to generate
the convex space faster. This method can adaptively create a
convex space based on the current kinematic characteristics
of the ego vehicle and the traffic scenario. Compared with
the conventional method (DP&QP), the algorithm achieves a
shorter average run time, with a decrease of 32.7 %.

In future work, we intend to employ and further develop the
proposed idea of convex space generation in lane-changing
scenarios involving multiple dynamic obstacles, thereby ex-
panding the applicability of this approach.
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